CT - Abdomen and Pelvis

• What is CT Scanning of the Abdomen/Pelvis?
• What are some common uses of the procedure?
• How should I prepare?
• What does the equipment look like?
• How does the procedure work?
• How is the CT scan performed?
• What will I experience during and after the procedure?
• Who interprets the results and how do I get them?
• What are the benefits vs. risks?
• What are the limitations of CT Scanning of the Abdomen and Pelvis?

What is CT Scanning of the Abdomen/Pelvis?

CAT scan: abdomen

CT scanning—sometimes called CAT scanning—is a noninvasive medical test that helps physicians diagnose and treat medical conditions.

CT scanning combines special x-ray equipment with sophisticated computers to produce multiple images or pictures of the inside of the body. These cross-sectional images of the area being studied can then be examined on a computer monitor, printed or transferred to a CD.

CT scans of internal organs, bones, soft tissue and blood vessels provide greater clarity and reveal more details than regular x-ray exams.

What are some common uses of the procedure?

This procedure is typically used to help diagnose the cause of abdominal or pelvic pain and diseases of the internal organs, bowel and colon, such as:

CAT scan: kidneys and ureters

• infections such as appendicitis, diverticulitis, pyelonephritis or infected fluid collections, aka. abscesses.

• inflammatory processes such as pancreatitis, liver cirrhosis or inflammatory bowel disease such as ulcerative colitis or Crohn's disease.

• cancers of the colon, liver, kidneys, pancreas and bladder as well as lymphoma.
• kidney and bladder stones.
• abdominal aortic aneurysms (AAA) and other diseases of the vessels such as blood clots and abnormal narrowings or stenoses of the vessels.

CT scanning of the abdomen/pelvis is also performed to:
• quickly identify injuries to the liver, spleen, kidneys or other internal organs in cases of trauma.
• guide biopsies and other procedures such as abscess drainages and minimally invasive tumor treatments.
• plan for and assess the results of surgery, such as organ transplants or gastric bypass.
• stage, plan and properly administer radiation treatments for tumors as well as monitor response to chemotherapy.

How should I prepare for the CT scan?
You should wear comfortable, loose-fitting clothing to your exam. You may be given a gown to wear during the procedure.

Metal objects including jewelry, eyeglasses, dentures and hairpins may affect the CT images and should be left at home or removed prior to your exam. You may also be asked to remove hearing aids and removable dental work.

You may be asked not to eat or drink anything for several hours beforehand, especially if a contrast material will be used in your exam. You should inform your physician of any medications you are taking and if you have any allergies. If you have a known allergy to contrast material, or "dye," your doctor may prescribe medications to reduce the risk of an allergic reaction.

Also inform your doctor of any recent illnesses or other medical conditions, and if you have a history of heart disease, asthma, diabetes, kidney disease or thyroid problems. Any of these conditions may increase the risk of an unusual adverse effect.

Women should always inform their physician and the CT technologist if there is any possibility that they are pregnant. See the Safety page (www.RadiologyInfo.org/en/safety/) for more information about pregnancy and x-rays.

What does the equipment look like?
The CT scanner is typically a large, box like machine with a hole, or short tunnel, in the center. You will lie on a narrow examination table that slides into and out of this tunnel. Rotating around you, the x-ray tube and electronic x-ray detectors are located opposite each other in a ring, called a gantry. The computer workstation that processes the imaging information is located in a separate room, where the technologist operates the scanner and monitors your examination.
How does the procedure work?

In many ways CT scanning works very much like other x-ray examinations. X-rays are a form of radiation—like light or radio waves—that can be directed at the body. Different body parts absorb the x-rays in varying degrees.

In a conventional x-ray exam, a small burst of radiation is aimed at and passes through the body, recording an image on photographic film or a special image recording plate. Bones appear white on the x-ray; soft tissue shows up in shades of gray and air appears black.

With CT scanning, numerous x-ray beams and a set of electronic x-ray detectors rotate around you, measuring the amount of radiation being absorbed throughout your body. At the same time, the examination table is moving through the scanner, so that the x-ray beam follows a spiral path. A special computer program processes this large volume of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. This technique is called helical or spiral CT.

CT imaging is sometimes compared to looking into a loaf of bread by cutting the loaf into thin slices. When the image slices are reassembled by computer software, the result is a very detailed multidimensional view of the body's interior.

Refinements in detector technology allow new CT scanners to obtain multiple slices in a single rotation. These scanners, called "multislice CT" or "multidetector CT," allow thinner slices to be obtained in a shorter period of time, resulting in more detail and additional view capabilities.

Modern CT scanners are so fast that they can scan through large sections of the body in just a few seconds. Such speed is beneficial for all patients but especially children, the elderly and critically ill.

For children, the CT scanner technique will be adjusted to reduce the radiation dose.

For some CT exams, a contrast material is used to enhance visibility in the area of the body being studied.

How is the CT scan performed?

The technologist begins by positioning you on the CT examination table, usually lying flat on your back or possibly on your side or on your stomach. Straps and pillows may be used to help you maintain the correct position and to hold still during the exam.

For children who cannot hold still for the examination, sedation may be needed. Motion will degrade the quality of the examination the same way that it affects photographs.

If contrast material is used, it will be swallowed, injected through an intravenous line (IV) or administered by enema, depending on the type of examination.

Next, the table will move quickly through the scanner to determine the correct starting position for the scans. Then, the table will move slowly through the machine as the actual CT scanning is performed.
You may be asked to hold your breath during the scanning. Any motion, whether breathing or body movements, can lead to artifacts on the images. This is similar to the blurring seen on a photograph taken of a moving object.

When the examination is completed, you will be asked to wait until the technologist verifies that the images are of high enough quality for accurate interpretation.

The CT scanning is usually completed within 30 minutes.

What will I experience during and after the procedure?

CT exams are generally painless, fast and easy. With helical CT, the amount of time that the patient needs to lie still is reduced.

Though the scanning itself causes no pain, there may be some discomfort from having to remain still for several minutes. If you have a hard time staying still, are claustrophobic or have chronic pain, you may find a CT exam to be stressful. The technologist or nurse, under the direction of a physician, may offer you a mild sedative to help you tolerate the CT scanning procedure.

If an intravenous contrast material is used, you will feel a slight pin prick when the needle is inserted into your vein. You may have a warm, flushed sensation during the injection of the contrast materials and a metallic taste in your mouth that lasts for a few minutes. Some patients may experience a sensation like they have to urinate but this subsides quickly.

If the contrast material is swallowed, you may find the taste mildly unpleasant; however, most patients can easily tolerate it. You can expect to experience a sense of abdominal fullness and an increasing need to expel the liquid if your contrast material is given by enema. In this case, be patient, as the mild discomfort will not last long.

Many patients also receive iodine intravenously (injected into a vein) to help evaluate blood vessels and organs such as the liver, kidneys and pancreas.

When you enter the CT scanner, special lights may be used to ensure that you are properly positioned. With modern CT scanners, you will hear only slight buzzing, clicking and whirring sounds as the CT scanner revolves around you during the imaging process.

You will be alone in the exam room during the CT scan. However, the technologist will be able to see, hear and speak with you at all times.

With pediatric patients, a parent may be allowed in the room but will be required to wear a lead apron to minimize radiation exposure.

After a CT exam, you can return to your normal activities. If you received contrast material, you may be given special instructions.
Who interprets the results and how do I get them?

A physician, usually a radiologist with expertise in supervising and interpreting radiology examinations, will analyze the images and send a signed report to your primary care physician or the physician who referred you for the exam, who will discuss the results with you.

What are the benefits vs. risks?

Benefits

• Viewing a CT scan, an experienced radiologist can diagnose many causes of abdominal pain with very high accuracy, enabling faster treatment and often eliminating the need for additional, more invasive diagnostic procedures.

• When pain is caused by infection and inflammation, the speed, ease and accuracy of a CT examination can reduce the risk of serious complications such as those caused by a burst appendix or ruptured diverticulum and the subsequent spread of infection.

• CT scanning is painless, noninvasive and accurate.

• A major advantage of CT is its ability to image bone, soft tissue and blood vessels all at the same time.

• Unlike conventional x-rays, CT scanning provides very detailed images of many types of tissue as well as the lungs, bones, and blood vessels.

• CT examinations are fast and simple; in emergency cases, they can reveal internal injuries and bleeding quickly enough to help save lives.

• CT has been shown to be a cost-effective imaging tool for a wide range of clinical problems.

• CT is less sensitive to patient movement than MRI.

• CT can be performed if you have an implanted medical device of any kind, unlike MRI.

• CT imaging provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as needle biopsies and needle aspirations of many areas of the body, particularly the lungs, abdomen, pelvis and bones.

• A diagnosis determined by CT scanning may eliminate the need for exploratory surgery and surgical biopsy.

• No radiation remains in a patient's body after a CT examination.

• X-rays used in CT scans usually have no immediate side effects.

Risks

• There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit of an accurate diagnosis far outweighs the risk.
• The effective radiation dose for this procedure varies. See the Safety page (www.RadiologyInfo.org/en/safety/) for more information about radiation dose.

• Women should always inform their physician and x-ray or CT technologist if there is any possibility that they are pregnant. See the Safety page (www.RadiologyInfo.org/en/safety/) for more information about pregnancy and x-rays.

• CT scanning is, in general, not recommended for pregnant women unless medically necessary because of potential risk to the baby.

• Nursing mothers should wait for 24 hours after contrast material injection before resuming breastfeeding.

• The risk of serious allergic reaction to contrast materials that contain iodine is extremely rare, and radiology departments are well-equipped to deal with them.

• Because children are more sensitive to radiation, they should have a CT study only if it is essential for making a diagnosis and should not have repeated CT studies unless absolutely necessary.

What are the limitations of CT Scanning of the Abdomen/Pelvis?

A person who is very large may not fit into the opening of a conventional CT scanner or may be over the weight limit for the moving table which is usually about 450 pounds.

CT scanning of the abdomen may not be as sensitive in identifying gallstones as ultrasound of the abdomen.

For some conditions, including but not limited to some liver, adrenal, kidney, pancreatic, uterine or ovarian abnormalities, the evaluation and diagnosis with MRI may be preferable over CT scanning.